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ABSTRACT

Increasing power densities and the high cost of low thermal
resistance packages and cooling solutions make it impracti-
cal to design processors for worst-case temperature scenar-
ios. As a result, packages and cooling solutions are designed
for less than worst-case power densities and dynamic voltage
and frequency scaling (DVFS) is used to prevent dangerous
on-chip temperatures at run time. Unfortunately, DVFS
can cause unpredicted drops in performance (e.g., long re-
sponse times). We propose and optimally solve the prob-
lem of thermally-constrained online work maximization for
general-purpose computing systems on uniprocessors with
discrete speed levels and non-negligible transition overheads.
Simulation results show that our approach completes 47.7%
on average and up to 68.0% more cycles than a naive policy.
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General Terms

Algorithms, Design, Performance, Theory

1. INTRODUCTION & CONTRIBUTIONS

In response to the increasing computing demands made
by applications, system designers have been delivering pro-
cessors with higher performance at the expense of increasing
power densities and temperatures. High chip temperature
impacts reliability, performance, cost, and power consump-
tion; microprocessor failure rate depends exponentially upon
operating temperature [10]. To handle unsafe temperatures,
packages and cooling solutions can be designed to handle
worst-case temperature profiles. However, this solution is
prohibitively expensive, since the cost of cooling solutions
increases super-linearly in power consumption [4].

Another, less expensive, solution to the temperature prob-
lem is to use processor throttling at run time: when the chip
temperature exceeds some threshold, the processor power
consumption and performance are temporarily reduced by
hardware or the operating system. Unfortunately, throt-
tling can cause significant and difficult-to-predict perfor-
mance loss such as increase in response times.

In this work, we attempt to minimize task response times
by maximizing the work completed via an online control pol-
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icy that requires no prior knowledge of the workload. Dy-
namic Voltage and Frequency Scaling (DVFS) is used to
keep the chip temperature within a temperature constraint.
Maximizing the work completed can also be useful in soft
real-time systems where the objective is to meet as many
deadlines as possible, since it can reduce the number of dead-
line misses. This claim is substantiated in Section 6.

While there exists work in literature that maximizes work
completed online using DVFS under a peak temperature
constraint [2,1,3], most solutions assume processors can con-
tinuously adjust their speeds. While some authors discuss
ways to adapt their solutions for processors with discrete
speed levels (albeit without any analysis), only Wang and
Bettati placed an emphasis on processors with discrete speed
levels [11]. In that work, the processor runs at the highest
speed until the threshold temperature is reached. The equi-
librium speed will then be used to keep the temperature just
below its constraint. The equilibrium speed is determined
by task power consumption, processor thermal resistance,
and temperature constraint and does not necessarily coin-
cide with one of the available speed levels.

To the best of our knowledge, there exists no work that
proposes a DVFS control policy for maximizing the work
completed for processors with discrete speed levels and non-
negligible transition overheads. The Intel chips have two
thermal management policies [5]. Once the chip tempera-
ture reaches the threshold temperature, the first mechanism
(known as Thermal Monitor 1), which is also the default
mechanism, reduces the duty cycle of the clock (i.e., the
proportion of time the clock is active) until the chip tem-
perature drops below the maximum temperature and a timer
has expired. The second mechanism (Thermal Monitor 2),
which is user-configurable, uses throttling to reduce power
consumption. While these mechanisms seem reasonable, it is
unclear how the user may select the appropriate speed levels
and the associated time durations to maximize the amount
of work completed. Finally, most existing industry thermal
management solutions have operated under the assumption
that thermal emergencies are rare events, for which reactive
techniques are sufficient. Now and in the future, due to the
cost of high-performance cooling solutions, processors will
often operate near their threshold temperatures, requiring
proactive techniques to maintain good performance.

In this paper, we tackle the problem of determining speed
schedules that maximizes the work completed under a maxi-
mum temperature constraint. We propose an optimal DVFS
control policy for processors with discrete speed levels and
non-negligible transition overheads. Our policy is applica-



ble to any uniprocessor architecture and requires only two
speed levels to maximize the work completed. The two speed
levels alternate in a periodic manner (Section 3) with some
high speed being applied until the chip temperature reaches
the threshold temperature. Simulation results show that our
DVFS control policy completes 47.7% on average and up to
68.0% more cycles than a naive policy.

2. PRELIMINARIES

We consider a DVFS-enabled processor with a tempera-
ture threshold Ty,.;. When the processor temperature reach
this threshold, the processor starts throttling, i.e., switching
from some high speed to some lower speed to reduce power
consumption and performance.

We adopt the lumped RC thermal model similar to that
used by Zhang and Chatha [13]. The die temperature above
the ambient temperature after ¢ time units is

T=T+To-T) e 7, (1)
where T is the die’s steady-state temperature and 7= Py -
R, with Pgy, being the dynamic power consumption of the
die and R its resistance. In addition, 7 is the chip time
constant, and 7Tp is the initial die temperature. Eq. 1 was
obtained by solving the following differential equation for 7":

RC% +T — RP =0. (2)

Although we will use Eq. 1 for the rest of the paper, all of
our derivations in this paper hold for any exponential tem-
perature equation of the same form. For instance, we can
replace Eq. 1 with the temperature equation obtained by
Rao and Vrudhula where the die and package are modeled
separately [9]. We can also extend Eq. 1 to account for leak-
age power by noting that a piecewise-linear function can be
used to estimate leakage power in the operating tempera-
ture ranges with roughly 5% error [7]. That is, the modified
Eq. 1 can be obtained by solving the following;:

dT
RC% + T — R(den + Pleak) = 07 (3)

where Pleqy = o1 + 8 for some constants o and 3 [7].

For each speed level k of the processor, we define an as-
sociated tuple (Vi, Sk, Px), where Vi, Sk, and Py are the
required voltage, speed, and power consumption of the pro-
cessor when it executes at speed level k, respectively. With-
out loss of generality, we assume that each speed level Sy
has been normalized to fall within the interval [0,1]. For
speed level k, Eq. 1 can be written as

T =T(Sk) + (To = T(Sk)) - e, (4)
where T(Sk) is the steady-state temperature when the pro-
cessor executes at speed level k and T'(Sy) = S Py R.
Problem 1: Given a processor that is kept busy with work
to be completed, determine a speed schedule such that the

peak temperature constraint is met and total work com-
pleted is maximized.

3. POLICY FOR PROCESSORS WITH NEG-
LIGIBLE TRANSITION OVERHEADS

We describe a policy for maximizing the work completed
over a schedule length based on some crucial observations.
Namely, we determine (i) the speed levels needed, (ii) the
length of time the processor should spend in each speed level,

and (iii) the temporal sequence of speed levels at which the
processor should execute.

For now, we assume that the processors under consider-
ation have negligible speed transition overheads (Section 4
will generalize). This simplifying assumption allows us to
identify some important characteristics of our policy.

Our objective is to develop an optimal DVFS control pol-
icy for use once the chip reaches its threshold temperature,
and not a pre-throttling policy. In many systems, the time
from startup to reaching the temperature constraint is a neg-
ligible percentage of total time. In addition, it is important
to note that our DVFS control policy does not perform task
scheduling, though it can be used in conjunction with any
existing task scheduling algorithm.

Consider a high speed level Sy where T(SH) > Taz-
During throttling, if the processor execute tasks using Sy
for long enough, the chip peak temperature will eventually
reach Tiaz. Our first question is whether such a high speed
should be used until the chip temperature reaches Tyqp Or
be used for a shorter amount of time. The following lemma
answers this question. In addition, the “sufficiently large
time interval” requirement is there to ensure that the time
interval under consideration is long enough for the chip tem-
perature to reach Thq, at least once.

LEMMA 1. Given a sufficiently large time interval [ta, ts],
consider the speed schedules that consecutively apply Sri,
Su, and Sz where T'(Sr1) < Tmaw, T(Sr2) < Tmaz and
T(SH) > Toas- In addition, Sp1 and Spe may be identical
but need nmot be. Let the transition overheads be negligible.
Given some initial temperature T, > min{T'(Sr1),T(Sr2)}
and end temperature Ty. A schedule that completes the maz-
imum amount of work must allow the chip temperature to
reach Tmae at the end of the application of Su.

PRrooOF. Let t; and t3 be the time durations during which
Sr1 and Spo are applied, respectively. In addition, let T3
and 7> be the temperatures at the end of the applications
of Sr1 and Su, respectively. Figure 1 provides a graphical
depiction of the corresponding speed schedule. The work
completed during [tq, ts] can be expressed as

W =S5p1-t14+Su - (ts —ta —t1 —t3) + Sp2 - t3 (5)
where

ts =71In (T2 — ZT(SM)) (6)
Ty —T(SL2)

3 - (th—ta) 7
Ty — T(Su) — (To — T(Sp1)) - e~ 5 - <%

T, —T'(SL2)

tl = Tll’l ot =

(T(S1a) — T(Sm)) - e~ 5 - <7T2—T(SL2>>
T, =T'(SL2)

(7

To determine how the work completed changes as a function

of T>, we take the partial derivative of W with respect to

T5, which yields

ow T

dT: Ty — T(Si) (2 = Surt

(Se1 — Su) - (T(Su) — T(SL2))

Ty — P(Su) — (Ta — T(S11)) -~ 5. (7T27T<Sm>)
T, —T'(Sp2)
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Figure 1: Graphical depiction of the speed schedule
in the statement of Lemma 1.

By writing the temperature equations for 77 and 75 and
using substitutions, it can be shown that
ty—ta—t1—t3

(T(Su) = T(Sta))e” =
~ ~ _ (tp—ta) T — ’f’ S
— Ty — T(Su) — (Ta — T(Sp1)) - e~ 27 [ 2= T(S22) )
T, — T(SLQ)
9)
Hence,
ow _ T
oT> Ty — T(SLQ)
Sy — Sr1) - (T(Su) —T(S
12 — Sy + (51 = 501) (F(Sw) ~ T(512) ],
(T(Su) —T(Sc1))e” g
(10)
Since Ty > T(SLQ), gTW > 0 if the expression inside the
parentheses of Eq. 10 is greater than zero. We know that
T(Su) — T(Sp2) > T'(Su)(Su — Sia), (11)
which leads to the following
. . _tp—ta—t;—ts
(Sp2 = Su) - (T'(Su) —T(Sc1))e g
+ (Su — S1) - (T(Sw) — T(St2))
~ _tp—ta—t1—t3
> (St2 — Su) - (T(Su) — T(St1))e T
)

+ (S —S11)(Seg — St2) - T I(SH)
> 0. (12)
This means that 2 8T > 0 and the work completed is max-
imized when T% is maximized. This, in turns, implies that

T> must equal T}, for the work completed to be maxi-
mized. [

In Lemma 1, we referred to the high (Sy) and low (Sr1
and Sp) speeds with the requirements that 7'(Sr1), T'(S12) <
Tomaz and T(Sg) > Tnes. Since modern processors often
have several speed levels, we use the following theorem to
determine which maximize the work completed.

THEOREM 1. Given a sufficiently large time interval [ta, ts],

consider the speed schedules that consecutively apply Sra,
Swu, and Sp2 an arbitrary number of times and T'(Sp1) <
Tonaz, T(SLQ) < Tmaz, and T(SH) > Thae. Let the transi-
tion overheads be negligible. Given some initial temperature
T, > min{T'(Sr1),T(Sr2)} and end temperature T, and as-
sume that the duration of the application of Sp1 or Spa is
non-zero, a schedule that completes the mazimum amount
of work must satisfy Sp1 = Sp2 = max{s|T(s) < Traz } and
Su = min{s|T(s) > Traz }-

PRrROOF. We first prove the theorem for the schedules that
consecutively apply Sri, Su, and Sr2 once. Let t; and

ts denote the durations of the application of Sp1 and Spa,
respectively. Let t2 denotes the duration of the application
of Sy and to = tp, —t, —t1 —t3. In addition, let T3 and 15 be
the temperatures at the end of the application of Sr1 and
S, respectively. We can write three associated temperature
equations as follows:

A ~ t
= T(S11) + (Ta = T(S1))e” 7, (13)
. ~ _tp—ta—t;—tg
= T(SH) + (T1 — T(SH))G T , and (14)
A N t
= T(S12) + (Ta — T(S12))e™ . (15
From Lemma 1, we know that T5 = Tiue. Letting A =

_ltp—ta—t3

e ™ and combining Eq. 13 with Eq. 14 yields

ti =7 In T(Su) — Tnas + (ATa — T(51))A . (16)
(T'(Su) = T(SL1))A

By definition, the total work completed during [te,ts] is

W = (St1 — Su) - t1 + (Sc2 — Su) - t3 + Su - (ts — ta).

To determine the appropriate value of Sr1 to maximize W,

we take the partial derivative of W with respect to Spi,
observing that neither A nor ¢t3 depends on Sr,1. We obtain:

8W_T1n< (St) = Tonas + (Ta = T(SLl))A>

dSr1 (T(Sw) — T(S11))A
7(Sr1 — )T (Sr1) . T(SH) — Tnas + A(Ta — T(SH))
T(SH) [(Sr1)  \T(Su) — Tmar + A(Ta — T(S11))

From Eq. 17, &~ = 0if T, = A" (Tyer — T(Su) +

T(Su)A). However, Tmae < T(Su) — A(T(Sk) — T,) and
therefore T, > A~ (Tomas — T(Str) +T(Sw)A). (This can be
proved by combining Eq. 13 with Eq. 14, writing the result-
ing equatlon as a funct1on of Tmm, and directly comparing

Tynaz to T(Su) — A(T(Sk) — T.)). Now, we want to deter-

mine how aaTVZI changes as T, increases. To do so, we take

the second partial derivative of W with respect to T,. We
have
>PwW A
8TaaSL1 (SH) maz + A(T T(SLl))

1 A(SL1 — Su)T (SL1) . (18)

(SH) maz + A(T T(SLl))
Since T(Sg) — Trmaz + A(Ts T(SH)) >0, T(Su) — Tmas +
A(T, — T(S11)) > 0. Now, aTaT > 0 if the expression

inside the main parentheses of Eq. 18 is greater than 0. In
other words, we wish to show that

A(Sp1 — Su)T' (Sta) >_1. (9)
T(SH) - Tmaw + A(Ta - T(SLl)) -

Since T,(Sm) < %, we have

T(Sz1)) < T(SH) — Tmas + A(Ta — T(S11))

Tmaz S T(SH) - (T(SH) - Ta)? (20)
which holds, as was explained between Eq. 17 and Eq. 18.

A(T(Su) —

82 Fo)%% .
Therefore, W > 0 and as T, increases, 2517 also in-
creases. In other words, 2% > 0 for all valid values of T,

» 851
and Sp1 = max{s\T( ) < Tmaz}.

Similar techniques can be used to prove that Sy = min{s\T(s) >

Tz} and Spo = max{s|T(s) < Taz }-



We now prove the theorem for the schedules that con-
secutively apply Sri, Su, and Sr2 an arbitrary number of
times by induction on the number of speed transitions within
[ta, tb], which is denoted by 1.

The basis: For ¢ = 1, there are two time intervals, and
some low speed Sy, is used either in the first or the second
time interval. In either case, we have shown earlier that
selecting S, = max{s|T < Tz} will maximize the work
completed for the corresponding scenario. Additionally, in
the other interval, the high speed Su that maximizes that
work completed must satisfy Sy = min{s|T" > Tma}, as
shown earlier.

The induction step: Assume that the theorem holds
for i < m. At the (¢ = n + 1)-th transition, there are four
possibilities: (i) Sg — Sr1, (ii) St1 — S, (iii) Sz — Sre,
(ii) Sp2 — Su. For (i), let ¢, be an arbitrary time point
in the S interval immediately before the newly added Sr1
interval. According to the induction assumption, regardless
of the actual value of T, the maximum work completed in
[ta,tz] is achieved by setting Sri1 = max{s|T < Tz }. For
interval [t5, 5], we have shown that the maximum work com-
pleted is also completed in [t,,t,] when Sr1 = min{s|T <
Trmaz}- A similar reasoning can be used for (ii), (iii), and
(iv). Thus, the total work completed is maximized when
Sr1 = Sp2 = max{s|T < Tmas} and Sy = min{s|T >
Tmaz}- O

As a direct consequence of Theorem 1, a DVFS control
policy that maximizes the work completed only needs to
use two speed levels: Sy = min{s|T" > Ty} and Si =
max{s|T < Tiaz }- Incorporating these results, the following
theorem generalizes the observation from Lemma 1 to an
arbitrary number of high speed intervals.

THEOREM 2. Given a sufficiently large time interval [ta, ts),

St and S be alternately applied and T(SL) < Topaz and
T(SH) > Tmaz- Let the transition overheads be negligible.
Given an initial temperature T, = T(SL) and end temper-
ature Ty, and let the total number of speed transitions be
fized, a schedule that completes the mazximum amount of
work must allow the chip temperature to reach Tias at the
end of every application of Sg.

PrOOF. We prove the theorem by induction on the num-
ber of speed transitions within [tq, ts], which is denoted by
i.

The basis: For ¢ = 1, there are two time intervals, and
Su can occur either in the first or the second time interval.
In either case, it is trivial to show that reaching 75,4, at the
end of Sy leads to the maximum work completed for the
corresponding scenario.

The induction step: Assume that the theorem holds for
i < n. At the (¢ = n+1)-th transition, either (i) Sy — St or
(it) S — Su. For (i), let ¢t1 be an arbitrary time point in the
S, interval immediately before the newly added Sr, interval.
According to the induction assumption, regardless of the
actual temperature at t1, the maximum work completed in
[ta,t1] is achieved by each Sy interval reaching Tinq. at the
end of the interval. For interval [t1,ts], by Lemma 1, the
maximum work completed is also completed in [t1,t,] when
Tmaz is reached at the end of the single Sy interval. Thus,
the total work completed is maximized when 73,4, occurs at
the end of every Sy interval. A similar but simpler reasoning
can be used for (ii). [

Theorems 1 and 2 provide a theoretical foundation for any
work-maximizing, DVFS control policy. That is, the theo-
rems specify the speed levels needed and indicate that it is
advantageous in terms of maximizing the work completed
to alternate between the high and low speeds while allowing
the chip to reach the maximum temperature at the end of
every high speed application interval. We now need to de-
termine how long the low speed level should be applied and
whether each low speed level interval should have the same
duration. To answer these questions, we begin by defining a
periodic speed schedule then showing that such a schedule
is part of the optimal DVF'S control policy.

Definition 1. A periodic speed schedule is a speed sched-
ule that alternately applies Sr and Sy (where T(SL) < Thnaz
and T(S 1) > Tmaz) In a time interval such that the dura-
tions of all applications of Sy are the same and the durations
of all applications of Sy, are the same.

LEMMA 2. Given a sufficiently large time interval [ta,ts)
with the initial chip temperature of Thaez, let Sp and Su
be alternately applied with Sy being applied until the chip
temperature reaches Tmaz and T(S1) < Tomez and T(Su) >
Tmaz- Let the transition overheads be megligible and let the
total number of speed transitions be fized. A schedule that
completes the maximum amount of work must be a periodic
speed schedule.

PrOOF. We first prove the lemma for two applications of
St and Sy. The total work completed using the uniform
schedule can be expressed as

W = Si(ty — ta) + (Su — SL) - 2p, (21)
where p is the duration of each of the two applications of
Su. On the other hand, the total work completed using the
non-uniform schedule can be written as

W' =S5ty —ta) + (Su — S1) - (r + q), (22)
where 7 and ¢ denote the duration of the first and second
applications of Sg, respectively. Observe that to compare
W with W', we only need to compare 2p with r + q.
We can derive an expression for p as

p=rin| = T(Sm) ~T(52) ~). @3
T(SH) - T‘maz + (Tmaz - T(SL))G_?
where t = t, — tq.
On the other hand, r and g can be expressed as

r=rln ( - T(Su) = T(SL)A 7 ) (24)
T(SH) - Tmaz + (Tmaz - T(SL))G_%

q = Tln ( = T(SH) — T(SL)A tQ ) 9 (25)
T(SH) - Tmaz + (Tmaz - T‘(SL))G_T

where tr +tQ =ty — to. We wish to show that the uniform

speed profile yields more work completed, i.e., 2p — (r +

q) > 0. After some algebraic manipulations, we obtain the
following inequality, which needs to be proved

(T(S#) = Tonas + (Tomas — T(SL))e™ F)-

(T(SH) = Tinaz + (Tma:c - T(SL))e_tTQ)

. . 2

> (T(Su) = Toas + (Taa = T(SL)e™F) ", (26)

Simplifying the above expression, we are left with the fol-
lowing

tr Q

e T +e T —2 7 >0. (27)



Letting tp = £ + A, tg = ¢ — A, and ignoring 7, we have

3
e( A) 4o (5- A)_Qe—ﬁzo

et et >2 (28)
which is true when A = 0. In addition, since
d(EA + €_A) A —A
N TEC T _ AL 2
A et —e 7, (29)

which is greater than or equal to zero, the lemma holds.
For n applications of St and S, the lemma can be proved
by generalizing Eq. 27 to

t(n—(n—1))

—t. _tn=(n=1))
E e "—n-e n +

t;er
(it _tn—(n=2))
Cs § : e (iz+t3)_n,e - +
titj €Tt #t
Cs Z e (tattittn) _ 677”("_(""_3)) +
ity ty €Dt #t;#ty,
c, 2 : e (tattiT) _ ot
b
tj,...€0 t; £t #...
(30)

where the constant 7 is omitted for readability, I' contains
the durations of all n applications of S for the non-uniform
speed schedule and where Cq,C>,... are some constants.
The above inequality can be shown to hold using substitu-
tions and derivatives as before. []

Though Lemma 2 describes a desired property of a work-
maximizing speed schedule, it does not specify the length of
the St intervals. The time duration in which the processor
applies Sr, determines the number of speed transitions in a
given time interval. For processors with negligible transition
overheads, more transitions would lead to more work com-
pleted (i.e., the duration of every application of Sy should
be minimized), as shown by the following theorem.

THEOREM 3. Given a sufficiently large time interval [ta,ts),

Let St and Sy be alternately applied and satisfying T(S1) <
Trez and T(SH) > Thmaz. Let the transition overheads be
negligible. A schedule with m speed transitions completes
more work than a schedule with n speed transitions if m > n.

PrOOF. The speed schedule with m speed transitions com-
pletes the following amount of work
W = Sp(ty — ta) + (Ser — SL) -m - p, (31)
where p is the duration of each of the m applications of
Sg. Similarly, the speed schedule with n speed transitions
completes the following amount of work

W' =Sr(ty —ta) + (Sg — SL) -n - q, (32)
where ¢ is the duration of each of the n applications of Sg.
As previously, p and ¢ can be expressed as

T(Su) — T(SL)
=71in| < - 33
P (T(SH) (sL))e—m) (33)

T‘maz + Tmaz -
q = Tl’fl = t ) (34)
T(SH) - Tmaz + Tmaz - (SL))€7F

( T
T(Su) — T(SL)
( T

where t = t, — t, and

m'pZTZn<A T(SH) ( 2 i >m
T(SH) Trax +( mazx T(SL))€7 mr
(35)
n'Q—Tln(A A(SH) ( )A t)n.
(SH) Tmaz + (Tmaar T(SL)) nT

(36)
Although ¢ > p, m - p > n - g due to the exponential nature

of equations (35) and (36) (and since m > n). Hence, W >
w'. O

We now summarize our optimal DVFS control policy.
To maximize the work completed, the processor should pe-
riodically alternate between the low speed S, = max{s|T <
Trmaz ; and the high speed Sy = min{s|T > Trmaz}. In ad-
dition, the processor should run at the high speed Sy until
the chip temperature reaches T... With negligible tran-
sition overhead, the processor should minimize the time it
spends running at the low speed (i.e., the throttling time)
by switching to the high speed as soon as possible.

4. EXTENDING THE OPTIMAL POLICY TO
NON-IDEAL CASES

Each speed transition imposes some overhead, reducing
the amount of time spent on computation. Figure 2 illus-
trates the typical trajectories for voltage and speed levels
during two transitions. When transitioning from a lower
speed to a higher speed, the voltage is gradually increased
until it reaches the required value (we have simplified the
voltage curve to a straight line when in reality it is a stair-
case curve). Once this happens, the processor switches to
the higher speed. During this transition, there is a small
time interval a during which the processor clock is halted
and no work is completed. The process of transitioning from
a higher speed to a lower speed is similar, except that the
processor switches to the new speed immediately and gradu-
ally decreases the voltage. Once again, the processor clock is
halted for a short duration 8. Typical values for « and 3 are
on the order of tens of microseconds. The voltage changing
times, a and b, are on the order of hundreds of microseconds.

Compared to the scenario where there is no transition
overhead (denoted as “ideal” in Figure 2), there is no work
loss during b. During « and (3, the number of cycles lost is
Su-a and St -3, respectively. Finally, during a, the number
of cycles lost is (S — Sr) - a. To find the optimal value of
the time the processor spends at the low speed level ¢;, we
find the maximum value of the net work completed function
that accounts for transition overheads.

Given a schedule length L, the net work completed W* is

W*:[(tzfﬁ+a)-SL+(th*0‘*“)'SH]'tlfth’ 37)

where tj, is the duration of the high speed level application.
The following theorem identifies the optimal value for ¢;.

THEOREM 4. Given a schedule length L, let St, and Su be
two speed levels satisfying T(SL) < Traz and T(SH) > Thnas
Let t; and ty, be the time durations the processor spends at the
low and high speeds, respectively, and let A\ = 6-Sp+a-Su+
(Sa—SL)-a, where a, 3, and a are constants associated with
transition overheads as defined previously. Further, assume
that the processor uses the DVFS control policy presented
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Figure 2: Waveforms of speed S and voltage V levels
for two transitions.

in Section 3. A speed schedule that mazximizes the net work
completed over L must have t; that satisfies
(St —SL)-(th =17 -th) = A-(1+1t,) =0,  (38)
aty,
oty
PROOF. Since A= -Sc+a-Sug+ (Sua —St) - a, Eq. 37
becomes
" (Su — Sp) -t A
W* = |Su — + - L. 39
[H < tr +tn t +tn (39)
A denotes the number of cycles lost due to transition over-
heads provided that the processor transitions from high speed
to low speed once and from low speed to high speed once.
To find the maximum value of W*, we compute OW™/dt7,
noting that t; can be expressed as

where ty, is expressed as a function of t; and t), =

¥

T(Su) —T(S1) — (To — T(SL))e” +
T(Se) — Trax

The partial derivative of W™ with respect to ¢ is

ég/z** =— @ +Lth)2 [(Sa — Sp)(tn —t] - th) — (1 +t5)A] .
l (41)

The maximum of W* occurs when (Sg —Sr) - (tn —t; -t},) —
O-(1+t},) = 0. Solving this equation for ¢; yields an optimal
throttling time. [

th =T1lIn (40)

As a result, we can use our previously proposed policy
to maximize the work completed for processors with non-
negligible transition overheads if the throttling time is found
by solving Eq. 38 using a nonlinear equation solver.

5.  WORKLOADS WITH DIFFERENT POWER

CONSUMPTIONS

So far, we have assumed that processor power consump-
tion is fixed over time for a given speed level. In reality,
the required power consumption may depend on the de-
tails of operation and hardware, resulting in steady-state
temperatures differing among workloads even for the same
processor speed level. Since our DVFS control policy re-
lies on the steady-state temperature of different speed levels
to determine Sy and Sp, some modifications are needed.
Consider a system that must execute different workloads
with different power consumption over time. For the dura-
tion of a workload, which may consist of a number of ap-
plications, we can determine Sy and Sy as follows: Sy =
min{s\s3PiR > Tmee} and Sp = max{s|s3PiR < Tmaz}s
where P; is the maximum power consumption when execut-
ing workload WL,. Aslong as the power consumption of the
workload in a given time interval is known at run-time, e.g.,

by using performance counter based power models [6], our
proposed DVF'S control policy will maximize the work com-
pleted. The more complex case where tasks in a workload
require different power consumptions is left as future work.

6. SIMULATION RESULTS

In this section, we use simulation results to demonstrate
the effectiveness of our optimal DVF'S control policy.

6.1 Simulation Setup

Using a Java simulator, we modeled our processor based
on the Alpha 21264 processor, which consumes 120 W of
power when running at the highest frequency of 4 GHz with
the maximum temperature of 110°C [9]. The silicon die
and copper package have the dimensions of 16 mm x 16 mm
x 0.5mm and 24mm X 24mm X 2mm, respectively. The
threshold temperature is set to 90 °C. To compute the time
constant for Eq. 1, we obtained temperature data via simula-
tions in ISAC [12] using the default settings for all thermal-
related parameters (e.g., heat capacity).

Since we did not have the data on the available voltage
and frequency pairs of the Alpha processor, we assumed that
it can switch to the same speed levels as the Intel Core
Duo [5]. That is, we used the speed levels of the Intel Core
Duo but calculated the corresponding power consumption
and frequency. For our system, the available speed levels
are: 0.462, 0.615, 0.692, 0.769, 0.846, 0.923, and 1.

As our policy does not perform scheduling, it is insensi-
tive to the type of applications that may be running. We
used a periodic soft real-time system as an example applica-
tion. Each simulation consisted of 100 randomly generated
task sets of 20 tasks each for 30 different utilization levels
(Ulever = 0.05,0.1,---,1.5), for a total of 3,000 task sets.
The utilization level signifies how loaded the processor is;
a utilization level of 1 or greater means that the system is
overloaded. Task periods ranged from 1s to 10s, with task
execution times from 0.2 to 0.8 of the periods. For under-
loaded systems, a background job was also added. Each task
set was simulated for a duration of 1,000 s.

For each run, we recorded the following data: number of
cycles completed, number of deadline missed, average delays
for jobs that missed their deadlines, and associated transi-
tion overhead, if applicable. Note that while we use a soft
real-time system as an example here, metrics such as the
number of cycles completed are relevant for general-purpose
computing systems as well. In addition, while maximizing
the work completed is not the same as maximizing the num-
ber of deadlines met, our results show that completing more
work often leads to meeting more job deadlines.

6.2 Negligible Transition Overheads Case

We now discuss the simulation results for the different
speed selection policies: (i) the naive approach where the
highest and lowest speed levels are both used (corresponding
to the speeds of 1 and 0.462, respectively), (ii) the one speed
approach where the highest of the low speed levels is used the
entire time (corresponding to the speed of 0.846), and (iii)
the best approach where the lowest of the high and highest of
the low speed levels are selected (corresponding to the speeds
of 0.923 and 0.846, respectively). Note here that the naive
approach could represent the policy used by Thermal Moni-
tor 2 described in Section 2. We did not specifically compare
with Thermal Monitor 1 since it is non-configurable. The
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Figure 3: Results for different speed selection policies with throttling time of 10s.
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Figure 4: Results for different throttling times for best speed selection policy.

initial chip temperature is set to Ty since we are inter-
ested in the performance of the system once the processor
starts to throttle. The throttling time used for this set of
simulations is 10s, which is similar to the default throttling
time for the 2.13 GHz Pentium M-770 CPU [8].

The results are shown in Figure 3(a)—(c), which compare
the average number of cycles completed, average number
of deadline misses, and average delays for jobs that missed
their deadlines, respectively. The average number of cycles
completed is compared with the number of cycles completed
when using the equilibrium speed described in Section 2. We
can see that the proposed speed selection policy consistently
outperforms the naive policy in terms of all performance
metrics. A comparison between the naive and best speed se-
lection policies reveals that our approach completes 47.65%
on average and up to 67.99% more cycles than the naive
approach. Our policy also improves the number of cycles
completed by the one speed policy by 1.60% on average and
up to 3.29%. When compared to the number of cycles com-
pleted using the equilibrium speed, our approach deviates
on average by only 2.76% and up to 2.93%. In addition,
our policy reduces deadline misses by 59.38% on average
and up to 100% compared to the naive policy. Our policy
also reduces deadline misses compared to the one speed ap-
proach by 3.65% on average and up to 45.74%. Note that
the best policy would yield more substantial performance
improvements over the one-speed policy for systems with
fewer speed levels and/or when the lowest of the high speed
differs significantly from the equilibrium speed.

Figure 4(d)—(f) show the effect of different throttling times
(i-e., the times the processor spends at the low speed) on
system performance when using our policy. We used the

throttling times of 0.1s, 0.5s, 1s, 5s, and 10s. Recall that
the 2.13 GHz Pentium M-770 CPU uses a throttling time of
about 10s [8]. With a throttling time of 0.1s, our DVF'S con-
trol policy completes between 0.20% and 2.51% on average
and up to between 0.22% and 2.68% more cycles than the
throttling times of 0.5, 1s, 5, and 10s, respectively. When
compared to the policy that uses the equilibrium speed, our
policy completes 0.25% fewer cycles (using the throttling
time of 0.1s). Last but not least, the smallest throttling
time (0.1s) reduces deadline misses by between 8.14% and
9.42% on average and up to 100%.

6.3 Non-Negligible Transition Overheads Case

As described in Section 4, the constants associated with
transition overheads that we need to consider are «, 3, and
a, which we set to 10 us, 5 us, and 100 us, respectively. Since
these constants are much smaller than the die thermal time
constants, it is reasonable to assume that the die tempera-
ture does not change during speed transitions.

Figure 5 plots the net number of cycles completed (i.e.,
with transition overheads considered) as a function of the
throttling times using our DVFS control policy. By solv-
ing Eq. 38, we know that the optimal throttling time is
43.23ms and this is confirmed by the results of the sim-
ulation. As expected, when transition overheads are non-
negligible, switching from the low to high speeds more often
than optimal decreases the rate of computation due to the
increasing proportion of time spend idle during transitions.
On the other hand, switching very infrequently can reduce
the computation rate because a lower percentage of time can
be spent at the higher speed.

7. CONCLUSIONS & FUTURE WORK
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Figure 5: Average number of cycles completed as
a function of throttling times when transition over-
heads are considered.

We proposed an optimal online DVFS control policy to
maximize instruction cycles subject to a peak temperature
constraint. Our solution is applicable to any processor with
discrete speed levels and non-negligible transition overheads.
Our policy completed 47.7% on average and up to 68.0%
more cycles when compared to the naive policy.

We plan on extending our proposed policy to consider
the time interval before the system reaches the threshold
temperature for the first time. To handle workloads where
tasks have different power consumption, modifications to the
proposed policy are needed. Finally, we would like to extend
our policy to consider multiprocessor architectures.
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